Exercise 7

1. Find all minimum/maximum points of the function

$$
F(x, y)=x y-x-y+3
$$

over the triangle with vertices at $(0,0),(2,0)$, and $(0,4)$.
2. Find all maximum/minimum points of the function

$$
z=x y \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}
$$

in its natural domain.
3. Determine whether the following problems have maximum or minimum in \mathbb{R}^{2}. Not need to find them.
(a) $g(x, y)=x^{3}+y^{3}-3 x y$,
(b) $h(x, y)=x^{4}+y^{4}-x^{2}-x y-y^{2}$,
(c) $k(x, y)=\sin x y+x^{2}$.
(d) $f(x, y)=(x-y+1)^{2}$,

Suggestion: Theorem 7.2 and its corollaries would be useful.
4. Find all maximum/minimum points of the function $u=x^{2}-x y+y^{2}-2 x+y$.
5. Find all maximum/minmimum points of the function $u=x y^{2}(1-x-2 y), \quad x, y>0$.
6. Let $\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ be n many order pairs. Find the straight line $y=a x+b$ so that the square error

$$
F(a, b)=\sum_{j=1}^{n}\left(y_{j}-a x_{j}-b\right)^{2}, \quad(a, b) \in \mathbb{R}^{2}
$$

is minimized.
7. Find all maximum/minimum points of the function

$$
w(x, y)=x y+\frac{50}{x}+\frac{20}{y}, \quad x, y>0
$$

8. Find and classify the critical points of the following functions
(a) $f_{1}(x, y)=9+4 y-3 x^{2}-2 y^{2}+4 x y$.
(b) $f_{2}(x, y)=3 x-x^{3}-3 x y^{2}$.
(c) $f_{3}(x, y)=x^{4}+y^{4}-4 x y$.
9. Find and classify the critical points of the function

$$
H(x, y)=x y \log \left(x^{2}+y^{2}\right), \quad(x, y) \neq(0,0)
$$

and $H(0,0)=0$.
10. Find all maximum/minimum points of the function

$$
h(x, y, z)=x y z
$$

over the set $\{(x, y, z): x+y+z=1, x, y, z \geq 0\}$.
11. Consider a hexagon with vertices $(\pm 1,0),(\pm x, \pm y), x, y \geq 0$, inscribed in the unit circle. Show that the area is maximal when it is a regular hexagon with equal sides and angles.
12. Use Lagrange multiplier to show that the distance from a point z to the hyperplane $H: a \cdot x=b$ is given by

$$
\frac{|a \cdot z-b|}{|a|}
$$

13. Find the points on the ellipse $x^{2}+x y+y^{2}=3$ that are closest to and farthest from the origin. Hint: Write the equations in the form $a x+b y=0, c x+d y=0$, and use the fact that $a d-b c=0$ if there are non-trivial solutions.
14. Let $p \in G$ be a critical point of f subject to $g=0$. Show that if its Lagrange multiplier is non-zero, then it is also a critical point of g subject to $f-f(p)=0$.
15. (a) Find the points of the hyperbola $x y=1$ that are closest to the origin $(0,0)$.
(b) Show that the same points maximize $x y$ over the circle $x^{2}+y^{2}-2=0$.
(c) Can you explain the "duality" in (a) and (b)?
16. A company uses the Cobb-Douglas production function

$$
N(x, y)=10 x^{0.6} y^{0.4}
$$

to estimate a new product. Here x is the number of units of labor and y is the number of units of capital required to produce $N(x, y)$ units of the product. Each unit of labor costs $\$ 30$ and each unit of capital costs $\$ 60$. If $\$ 300,000$ is budgeted for the production, determine how that amount should be allocated to maximize production, and find the maximum production.
17. Let T be a right triangle with sides x, y and hypotenuse z. Find the one maximizing the area subject to the perimeter constraint $x+y+z=10$. Does there exist an area minimizing one?
18. Find the maximum/minimum points of the function $g(x, y, z)=x y+z^{2}$ subject to the constraints $y-x=0$ and $x^{2}+y^{2}+z^{2}=4$.

